Exercise 1.3.2

Two one-dimensional rods of different materials joined at $x=x_{0}$ are said to be in perfect thermal contact if the temperature is continuous at $x=x_{0}$:

$$
u\left(x_{0}-, t\right)=u\left(x_{0}+, t\right)
$$

and no heat energy is lost at $x=x_{0}$ (i.e., the heat energy flowing out of one flows into the other). What mathematical equation represents the latter condition at $x=x_{0}$? Under what special condition is $\partial u / \partial x$ continuous at $x=x_{0}$?

Solution

If the heat energy flowing into $x=x_{0}$ is the same flowing out of it, then the energy balance gives

$$
A\left(x_{0}-\right) \phi\left(x_{0}-, t\right)=A\left(x_{0}+\right) \phi\left(x_{0}+, t\right)
$$

where ϕ is the heat flux, the thermal energy flowing per unit area, and A is the area. $A\left(x_{0}-\right)$ represents the area of the first rod and $A\left(x_{0}+\right)$ represents the area of the second one. Assuming the areas of the two rods are equal, this energy balance simplifies to

$$
\phi\left(x_{0}-, t\right)=\phi\left(x_{0}+, t\right) .
$$

According to Fourier's law of heat conduction, the heat flux is proportional to the temperature gradient.

$$
\phi(x, t)=-K_{0}(x) \frac{\partial u}{\partial x}
$$

where $K_{0}(x)$ is a proportionality constant known as the thermal conductivity. It has different values for different materials, so $K_{0}\left(x_{0}-\right)$ represents the thermal conductivity of the first rod and $K_{0}\left(x_{0}+\right)$ represents the thermal conductivity of the second one. The energy balance becomes

$$
-K_{0}\left(x_{0}-\right) \frac{\partial u}{\partial x}\left(x_{0}-, t\right)=-K_{0}\left(x_{0}+\right) \frac{\partial u}{\partial x}\left(x_{0}+, t\right),
$$

or

$$
K_{0}\left(x_{0}-\right) \frac{\partial u}{\partial x}\left(x_{0}-, t\right)=K_{0}\left(x_{0}+\right) \frac{\partial u}{\partial x}\left(x_{0}+, t\right) .
$$

If the two rods happen to made of the same material, then $K_{0}\left(x_{0}-\right)=K_{0}\left(x_{0}+\right)$, and the energy balance implies that the temperature gradient will be continuous at $x=x_{0}$.

$$
\frac{\partial u}{\partial x}\left(x_{0}-, t\right)=\frac{\partial u}{\partial x}\left(x_{0}+, t\right) .
$$

